
Chapter 8

What Java Does (and When)
In This Chapter
▶ Making decisions with Java statements
▶ Repeating actions with Java statements

H
uman thought centers around nouns and verbs. Nouns are the “stuff,”
and verbs are the stuff’s actions. Nouns are the pieces, and verbs are

the glue. Nouns are, and verbs do. When you use nouns, you say “book,”
“room,” or “stuff.” When you use verbs, you say “do this,” “do that,” “tote
that barge,” or “lift that bale.”

Java also has nouns and verbs. Java’s nouns include int, JOptionPane,
and String, along with Android-specific terms such as Activity,
Application, and Bundle. Java’s verbs involve assigning values, choosing
among alternatives, repeating actions, and taking other courses of action.

This chapter covers some of Java’s verbs. (In the next chapter, I bring in the
nouns.)

Making Decisions
When you’re writing computer programs, you’re continually hitting forks in
roads. Did the user type the correct password? If the answer is yes, let the
user work; if it’s no, kick the bum out. The Java programming language needs
a way to make a program branch in one of two directions. Fortunately, the
language has a way: It’s the if statement. The use of the if statement is
illustrated in Listing 8-1.

192 Part II: Writing Your Own Java Programs

Listing 8-1: Using an if Statement
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class TicketPrice {

 public static void main(String[] args) {
 String ageString;
 int age;
 String specialShowingString;
 String price;

 ageString = JOptionPane.showInputDialog(“Age?”);
 age = Integer.parseInt(ageString);

 specialShowingString = JOptionPane.showInputDialog
 (“Special showing (y/n)?”);

 if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”)) {
 price = “$7.00”;
 } else {
 price = “$10.00”;
 }

 JOptionPane.showMessageDialog(null,
 price, “Ticket price”,
 JOptionPane.INFORMATION_MESSAGE);
 }

}

Listing 8-1 revives a question that I pose originally in Chapter 6: How much
should a person pay for a movie ticket? Most people pay $10. But when the
movie has no special showings, youngsters (under 18) and seniors (65 and
older) pay only $7.

In Listing 8-1, a Java if statement determines a person’s eligibility for the
discounted ticket. If this condition is true:

(age < 18 || 65 <= age) && specialShowingString.
equals(“n”)

the price becomes “$7.00”; otherwise, the price becomes “$10.00”. In
either case, the code displays the price in a message box. (See Figure 8-1.)

193 Chapter 8: What Java Does (and When)

Figure 8-1:
Checking
the ticket

price.

Testing for equality
Java has several ways to test for equality: “Is this value the same as that
value?” None of these ways is the first one you’d consider. In particular,
to find out whether someone’s age is 35, you don’t write if (age = 35).
Instead, you use a double equal sign (==): if (age == 35). In Java, the
single equal sign (=) is reserved for assignment. So age = 35 means “Let
age stand for the value 35”, and age == 35 means “True or false: Does age
stand for the value 35?”

Comparing two strings is a different story. When you compare two strings,
you don’t use the double equal sign. Using it would ask a question that’s
usually not what you want to ask: “Is this string stored in exactly the same
place in memory as that other string?” Instead, you usually ask, “Does this
string have the same characters in it as that other string?” To ask the second
question (the more appropriate one), use Java’s equals method. To call
this equals method, follow one of the two strings with a dot and the word
equals, and then with a parameter list containing the other string:

if (specialShowingString.equals(“n”)) {

The equals method compares two strings to see whether they have the
same characters in them. In this paragraph’s tiny example, the variable
specialShowingString refers to a string, and the text “n” refers to
a string. The condition specialShowingString.equals(“n”) is true
if specialShowingString refers to a string whose only character is the
letter n.

194 Part II: Writing Your Own Java Programs

Java if statements
An if statement has this form:

if (condition) {
 statements to be executed when the condition is true
} else {
 statements to be executed when the condition is false
}

In Listing 8-1, the condition being tested is

(age < 18 || 65 <= age) &&
specialShowingString.equals(“n”)

The condition is either true or false — true for youngsters and seniors
when there’s no special showing and false otherwise.

Conditions in if statements
The condition in an if statement must be enclosed in parentheses. The
condition must be a boolean expression — an expression whose value is
either true or false. For example, the following condition is okay:

if (numberOfTries < 17) {

But the strange kind of condition that you can use in other (non-Java)
languages — languages such as C++ — is not okay:

if (17) { //This is incorrect.

 See Chapter 6 for information about Java’s primitive types, including the
boolean type.

Omitting braces
You can omit an if statement’s curly braces when only one statement
appears between the condition and the word else. You can also omit braces
when only one statement appears after the word else. For example, the
following chunk of code is right and proper:

if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”))
 price = “$7.00”;
else
 price = “$10.00”;

195 Chapter 8: What Java Does (and When)

The code is correct because only one statement (price = “$7.00”)
appears between the condition and the else, and only one statement (price
= “$10.00”) appears after the word else.

An if statement can also enjoy a full and happy life without an else part.
The following example contains a complete if statement:

price = “$10.00”;
if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”))
 price = “$7.00”;

Compound statements
An if statement is one of Java’s compound statements because an if state-
ment normally contains other Java statements. For example, the if state-
ment in Listing 8-1 contains the assignment statement price = “$7.00”
and the other assignment statement contains price = “$10.00”.

A compound statement might even contain other compound statements. In
this example:

price = “$10.00”;
if (age < 18 || 65 <= age) {
 if (specialShowingString.equals(“n”)) {
 price = “$7.00”;
 }
}

one if statement (with the condition age < 18 || 65 <= age) contains
another if statement (with the condition specialShowingString.
equals(“n”)).

A detour concerning Android
screen densities
A device’s screen density is the number of pixels squeezed into each inch of
the screen. Older devices and less expensive devices have low screen
densities, and newer, more expensive devices compete to have increasingly
higher screen densities.

Android supports a wide range of screen densities. It also goes to the trouble
of grouping the densities, as I show in Table 8-1.

196 Part II: Writing Your Own Java Programs

Table 8-1 Android Screen Densities
Name Acronym Approximate*

Number of Dots per
Inch (dpi)

Fraction of the
Default Density

DENSITY_LOW ldpi 120 3⁄4
DENSITY_MEDIUM mdpi 160 1
DENSITY_HIGH hdpi 240 11⁄5
DENSITY_XHIGH xhdpi 320 2
DENSITY_XXHIGH xxhdpi 480 3
* When the screen density of a device doesn’t match a number in Column 3 of Table 8-1, Android does
its best with the existing categories. For example, Android classifies density 265 dpi in the hdpi group.

Fun facts: DENSITY_XHIGH is the same as 1080p high-definition television in
the United States. A seldom-used Android density, DENSITY_TV with 213 dpi,
represents 720p television.

Screen densities can make a big difference. An image that looks good on
a low-density screen might look choppy on a high-density screen. And an
image designed for a high-density screen might be much too large for a low-
density screen. That’s why, when you create a new application, Android
offers to create several different icons for your app. (See Figure 8-2. And I’m
sorry, Paul — it’s another cat picture!)

Figure 8-2:
One icon;

many sizes.

197 Chapter 8: What Java Does (and When)

Choosing among many alternatives
A Java if statement creates a fork in the road: The computer chooses
between two alternatives. But some problems lend themselves to forks with
many prongs. What’s the best way to decide among five or six alternative
actions?

For me, multipronged forks are scary. In my daily life, I hate making decisions.
(If a problem crops up, I would rather have it be someone else’s fault.) So,
writing the previous sections (on making decisions with Java’s if statement)
knocked the stuffing right out of me. That’s why my mind boggles as I begin
this section on choosing among many alternatives.

To prepare for this section’s example, I created the four icons shown in
Figure 8-2. The icons are for four of the densities depicted in Table 8-1. I have
a medium-density icon, a high-density icon, an extra-high-density icon, and an
extra-extra-high-density icon.

I named each icon cat.png and placed the four icons into four different
folders. I added a fifth folder for the ic_dialog_alert.png icon, as shown
in Figure 8-3.

Figure 8-3:
Folders

containing
images.

The folder structure matches the one you’d see in an Android app. To keep
the example simple, I created a plain, old Java program to display the icons.
The program is shown in Listing 8-2.

Listing 8-2: Switching from One Icon to Another
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIcons {

 public static void main(String[] args) {
 String densityCodeString = JOptionPane

(continued)

198 Part II: Writing Your Own Java Programs

Listing 8-2 (continued)
 .showInputDialog(“Density?”);

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:
 iconFileName = “res/drawable-xhdpi/cat.png”;
 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

 The code in Listing 8-2 is a standard Oracle Java program. The code illustrates
some ideas about Android screen densities, but the program is not an Android
application. This program can’t run on an Android device. In Chapter 10, I
begin building some examples that run on Android devices.

In Listing 8-2, the program asks the user to enter a screen-density value. If
the user types 160, for example, the program responds by displaying my
medium-density icon (the image in the cat.png file in my res/drawable-
mdpi directory). Two runs of the program are shown in Figure 8-4.

Why the medium-density icon? The program enters the switch statement
in Listing 8-2. The switch statement contains an expression (the value of
densityCode). The switch statement also contains case clauses, followed

199 Chapter 8: What Java Does (and When)

(optionally) by a default clause. The program compares the value of
densityCode with 160 (the number in the first of the case clauses). If the
value of densityCode is equal to 160, the program executes the statements
after the words case 160.

Figure 8-4:
Running
the code
shown in

Listing 8-2.

In Listing 8-2, the statements after case 160 are

iconFileName = “res/drawable-mdpi/cat.png”;
message = “mdpi”;
break;

The first two statements set the values of iconFileName and message in
preparation for the display of a message box. The third statement (the break
statement) jumps out of the entire switch statement, skipping past all the
other case clauses and past the default clause to get to the last part of the
program.

After the switch statement, the statement

ImageIcon icon = new ImageIcon(iconFileName);

creates a new icon variable to refer to the image in the iconFileName file.
(I have more to say about this kind of statement in Chapter 9.) Finally, the
statement

JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);

displays the icon image in a message box on the user’s screen. (Refer to
Figure 8-4.)

200 Part II: Writing Your Own Java Programs

A simple slash?
Both the Windows and Macintosh operating
systems have directories (also known as
folders), and these directories may contain
subdirectories, which in turn may contain their
own subdirectories. At the bottom of the food
chain is the humble file containing a document,
an image, a sound, or whatever. On my
Windows computer, one of my cat.png files
lives in a directory named drawable-hdpi,

which is inside a directory named res, which
is inside an Eclipse project directory named
08-02. The Eclipse project directory is inside
my Eclipse workspace directory, which in
turn is inside my Barry directory, which is
inside my Users directory, as shown in the
sidebar figure. It’s a long chain of stuff leading
eventually to a picture of a cat.

When you’re visiting Times Square in New
York City, you can say, “I’m walking to the
McDonald’s on 34th Street.” You don’t have
to say “I’m walking to the McDonald’s on 34th
Street in New York City, USA.” In a similar
way, my code doesn’t have to refer to the
cat.png file by naming a whole bunch of
directories and subdirectories. Instead, I can
take advantage of the fact that Listing 08-02 is
in my 08-02 directory. From the viewpoint of
the 08-02 directory, I can refer directly to the
res directory, which is contained immediately
inside the 08-02 directory. In both the
Windows and Macintosh operating system, I
can use the forward slash character (/) to point
from the 08-02 directory to my cat picture:

res/drawable-hdpi/cat.png

In Windows, the forward slash works in many
directory-and-file situations. But the backslash
(\) is used more commonly than the forward
slash in Windows. So in Windows, I usually
refer to my cat picture this way:

res\drawable-hdpi\cat.png

But there’s a problem. In a Java string, a
single backslash (\) has a special meaning.
That special meaning depends on whatever
character appears immediately after the
backslash. For example, \n stands for “Go to
a new line,” \t stands for “Go to the next tab
stop,” and \\ stands for “A single backslash.”
In Listing 8-2, a double-quoted string such as
“res\\drawable-mdpi\\cat.png”
stands for res\drawable-mdpi\cat.
png. To the Windows operating system, this
double-backslash business is another way
to refer to the cat.png file that’s in the
drawable-mdpi subdirectory of the res
directory.

Once again, if you’re a Mac user, you use a
forward slash (/) to separate directory names,
and a forward slash has no special meaning
inside a Java string. Mac users don’t have to
worry about doubling up on slashes.

201 Chapter 8: What Java Does (and When)

Take a break
This news might surprise you: The end of a case clause (the beginning of
another case clause) doesn’t automatically make the program jump out of
the switch statement. If you forget to add a break statement at the end of a
case clause, the program finishes the statements in the case clause and then
continues executing the statements in the next case clause. Imagine that I write
the following code (and omit a break statement):

switch (densityCode) {
case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
... Etc.

With this modified code (and with densityCode equal to 160), the program
sets iconFileName to “res/drawable-mdpi/cat.png”, sets message
to “mdpi”, sets iconFileName to “res/drawable-hdpi/cat.png”,
sets message to “hdpi”, and, finally, breaks out of the switch statement
(skipping past all other case clauses and the default clause). The result is
that iconFileName has the value “res/drawable-hdpi/cat.png” (not
“res/drawable-mdpi/cat.png”) and that message has the value “hdpi”
(not “mdpi”).

This phenomenon of jumping from one case clause to another in the
absence of a break statement) is called fall-through, and, occasionally, it’s
useful. Imagine a dice game in which 7 and 11 are instant wins; 2, 3, and 12
are instant losses; and any other number (from 4 to 10) tells you to continue
playing. The code for such a game might look like this:

switch (roll) {
case 7:
case 11:
 message = “win”;
 break;
case 2:
case 3:
case 12:
 message = “lose”;
 break;
case 4:
case 5:
case 6:
case 8:
case 9:

202 Part II: Writing Your Own Java Programs

case 10:
 message = “continue”;
 break;
default:
 message = “not a valid dice roll”;
 break;
}

If you roll a 7, you execute all the statements immediately after case 7 (of
which there are none), and then you fall-through to case 11, executing the
statement that assigns “win” to the variable message.

 Every beginning Java programmer forgets to put a break statement at the end
of a case clause. When you make this mistake, don’t beat yourself up about
it. Just remember what’s causing your program’s unexpected behavior, add
break statements to your code, and move on. As you gain experience in
writing Java programs, you’ll make this mistake less and less frequently.
(You’ll still make the mistake occasionally, but not as often.)

The computer selects a case clause
When you run the code in Listing 8-2, the user doesn’t have to enter the
number 160. If the user enters 320, the program skips past the statements in
the case 160 clause and then skips past the statements in the 240 clause.
The program hits pay dirt when it reaches the case 320 clause, and executes
that clause’s statements, making iconFileName be “res/drawable-
xhdpi/cat.png” and making message be xhdpi. The case clause’s
break statement makes the program skip the rest of the stuff in the switch
statement.

The default clause
A switch statement’s optional default clause is a catchall for values that
don’t match any of the case clauses’ values. For example, if you run the
program and the user enters the number 265, the program doesn’t fix on any
of the case clauses. (To select a switch statement’s case clause, the value
after the word switch has to be an exact match of the value after the word
case.) So if densityCode is 265, the program skips past all the case clauses
and executes the code in the default clause, making iconFileName be
“res/drawable/ic_dialog_alert.png” and making message be “No
suitable icon”. In this way, the program in Listing 8-2 doesn’t mirror
Android’s screen-resolution tricks. (Android uses an existing icon even if
the screen’s density doesn’t exactly match one of the numbers 160, 240, 320,
or 480.)

203 Chapter 8: What Java Does (and When)

 The last break statement in Listing 8-2 tells the computer to jump to the end
of the switch statement, skipping any statements after the default clause.
But look again. Nothing comes after the default clause in the switch
statement! Which statements are being skipped? The answer is none. I put a
break at the end of the default clause for good measure. This extra break
statement doesn’t do anything, but it doesn’t do any harm, either.

Some formalities concerning
Java switch statements
A switch statement has the following form:

switch (expression) {
case constant1:
 statements to be executed when the
 expression has value contstant1
case constant2:
 statements to be executed when the
 expression has value contstant2
case ...

default:
 statements to be executed when the
 expression has a value different from
 any of the constants
}

You can’t put any old expression in a switch statement. The expression
that’s tested at the start of a switch statement must have one of these
elements:

 ✓ A primitive type: char, byte, short, or int

 ✓ A reference type: Character, Byte, Short, or Integer

 ✓ An enum type

An enum type is a type whose values are limited to the few that you declare.
For example, the line

enum TrafficSignal {GREEN, YELLOW, RED};

defines a type whose only values are GREEN, YELLOW, and RED. Elsewhere in
your code, you can write

204 Part II: Writing Your Own Java Programs

TrafficSignal signal;
signal = TrafficSignal.GREEN;

to make use of the TrafficSignal type.

Starting with Java 7, you can put a String type expression at the start of
a switch statement. But the last time I checked, Java 5 or 6 is required for
developing Android code. You can’t use Java 7 or later to create an Android
app. So with densityCodeString declared to be of type String, you
can’t create a switch statement whose first line is switch (display
CodeString), and you can’t have a case clause that begins with case
“hdpi”.

Repeating Instructions
Over and Over Again

In 1966, the company that brings you Head & Shoulders shampoo made
history. On the back of the bottle, the directions for using the shampoo read,
“Lather, rinse, repeat.” Never before had a complete set of directions (for
doing anything, let alone shampooing hair) been summarized so succinctly.
People in the direction-writing business hailed it as a monumental achieve-
ment. Directions like these stood in stark contrast to others of the time. (For
instance, the first sentence on a can of bug spray read, “Turn this can so that
it points away from your face.” Duh!)

Aside from their brevity, the characteristic that made the Head & Shoulders
directions so cool was that, with three simple words, they managed to
capture a notion that’s at the heart of all instruction-giving: repetition. That
last word, repeat, turned an otherwise bland instructional drone into a
sophisticated recipe for action.

The fundamental idea is that when you’re following directions, you don’t just
follow one instruction after another. Instead, you make turns in the road. You
make decisions (“If HAIR IS DRY, then USE CONDITIONER,”) and you repeat
steps (“LATHER-RINSE, and then LATHER-RINSE again.”). In application
development, you use decision-making and repetition all the time.

205 Chapter 8: What Java Does (and When)

Check, and then repeat
The program in Listing 8-2 is nice (if I say so myself). But the program has
its flaws. I expect the user to type a number and for things to go wrong if the
user doesn’t type a number, as shown in Figure 8-5. The program doesn’t
even like numbers with decimal points.

Figure 8-5:
My program

wants
integers!

You should anticipate all kinds of user input. To do that, you have several
alternatives. One thing you can do is to dismiss bad input and ask the user
for better input — so you might have to repeat your input request over and
over again. Listing 8-3 shows you one way to do it.

206 Part II: Writing Your Own Java Programs

Listing 8-3: Look Before You Leap
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithWhile {

 public static void main(String[] args) {
 String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

 while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”)) {

 densityCodeString = JOptionPane
 .showInputDialog(“Invalid input. Try again:”);

 }

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = „res/drawable-mdpi/cat.png“;
 message = „mdpi“;
 break;
 case 240:
 iconFileName = „res/drawable-hdpi/cat.png“;
 message = „hdpi“;
 break;
 case 320:
 iconFileName = „res/drawable-xhdpi/cat.png“;
 message = „xhdpi“;
 break;
 case 480:
 iconFileName = „res/drawable-xxhdpi/cat.png“;
 message = „xxhdpi“;
 break;
 default:
 iconFileName = „res/drawable/ic_dialog_alert.png“;
 message = „No suitable icon“;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 „Icon“, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

207 Chapter 8: What Java Does (and When)

A run of the code in Listing 8-3 is shown in Figure 8-6.

Figure 8-6:
Try, try, try

again.

The code in Listing 8-3 begins by displaying an input dialog box with the
“Density?” message. If the user responds with a value other than 160, 240,
320, or 480, the code dives into its while statement, displaying the message
“Invalid input. Try again:” in the input dialog box over and over
again. The code continues displaying this input dialog box until the user
responds with one of the four valid values — 160, 240, 320, or 480.

In plain language, the while statement in Listing 8-3 says:

while (densityCodeString isn’t 160 and
 densityCodeString isn’t 240 and
 densityCodeString isn’t 320 and
 densityCodeString isn’t 480) {

 get a value for the densityCodeString

}

In even plainer language, the while statement says:

208 Part II: Writing Your Own Java Programs

while (densityCodeString isn’t acceptable) {

 get a value for the densityCodeString

}

The while statement is one of Java’s compound statements. It’s also one of
Java’s looping statements because, when executing a while statement, the
computer can go into a loop, spinning around and around, executing a
certain chunk of code over and over again.

In a looping statement, each go-around is an iteration.

 If you stare at Listing 8-3, you might notice this peculiarity: The while
statement at the top of the program ensures that the density is either 160,
240, 320, or 480. But toward the end of the program, the switch statement’s
default clause provides for the possibility that the density isn’t one of those
160, 240, 320, or 480 values. What gives? The answer is that it never hurts to
double-check. You may think that your while statement can spit out only
160, 240, 320, or 480, but you might have forgotten about an unusual scenario
that causes the density to be another, strange number. And what happens if
another developer (someone trying to improve on your code) messes with
your while statement and lets bad density values trickle over to the switch
statement? Adding a default clause to a switch statement is never costly,
and the default clause always adds an extra layer of protection from errors.

Some formalities concerning
Java while statements
A while statement has this form:

while (condition) {
 statements inside the loop
}

The computer repeats the statements inside the loop over and over again as
long as the condition in parentheses is true:

Check to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

And so on.

209 Chapter 8: What Java Does (and When)

At some point, the while statement’s condition becomes false. (Generally,
this happens because one of the statements in the loop changes one of the
program’s values.) When the condition becomes false, the computer stops
repeating the statements in the loop. (That is, the computer stops iterating.)
Instead, the computer executes whatever statements appear immediately
after the end of the while statement:

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Oops! The condition is no longer true!
Execute the code immediately after the while statement.

In Listing 8-3, the code

int densityCode =
 Integer.parseInt(densityCodeString);

comes immediately after the end of the while statement.

Variations on a theme
Many of the if statement’s tricks apply to while statements as well. A
while statement is a compound statement, so it might contain other com-
pound statements. And when a while statement contains only one state-
ment, you can omit curly braces. So the following code is equivalent to the
while statement in Listing 8-3:

while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”))

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

After all, the code

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

is only one (admittedly large) assignment statement.

210 Part II: Writing Your Own Java Programs

 A while statement’s condition might become false in the middle of an
iteration, before all the iteration’s statements have been executed. When this
happens, the computer doesn’t stop the iteration dead in its tracks. Instead,
the computer executes the rest of the loop’s statements. After executing the
rest of the loop’s statements, the computer checks the condition (finding the
condition to be false) and marches on to whatever code comes immediately
after the while statement.

 The previous icon should come with some fine print. To be painfully accurate,
I should point out a few ways for you to stop abruptly in the middle of a
loop iteration. You can execute a break statement to jump out of a while
statement immediately. (It’s the same break statement that you use in a
switch statement.) Alternatively, you can execute a continue statement
(the word continue, followed by a semicolon) to jump abruptly out of an
iteration. When you jump out with a continue statement, the computer ends
the current iteration immediately and then checks the while statement’s
condition. A true condition tells the computer to begin the next loop iteration.
A false condition tells the computer to go to whatever code comes after the
while statement.

Priming the pump
Java’s while statement uses the policy “Look before you leap.” The computer
always checks a condition before executing the statements inside the loop.
Among other things, this forces you to prime the loop. When you prime a
loop, you create statements that affect the loop’s condition before the
beginning of the loop. (Think of an old-fashioned water pump and how
you have to prime the pump before water comes out.) In Listing 8-3, the
initialization in

String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

primes the loop. This initialization — the = part — gives densityCodeString
its first value so that when you check the condition !densityCodeString.
equals(“160”) && ... Etc. for the first time, the variable density
CodeString has a value that’s worth comparing.

Here’s something you should consider when you create a while statement:
The computer can execute a while statement without ever executing the
statements inside the loop. For example, the code in Listing 8-3 prompts the
user one time before the while statement. If the user enters a good density
value, the while statement’s condition is false. The computer skips past the
statement inside the loop and goes immediately to the code after the while
statement. The computer never displays the Invalid input. Try again
prompt.

211 Chapter 8: What Java Does (and When)

Repeat, and then check
The while statement (which I describe in the previous section) is the
workhorse of repetition in Java. Using while statements, you can do any
kind of looping that you need to do. But sometimes it’s convenient to have
other kinds of looping statements. For example, occasionally you want to
structure the repetition so that the first iteration takes place without
checking a condition. In that situation, you use Java’s do statement. Listing 8-4
is almost the same as Listing 8-3. But in Listing 8-4, I replace a while statement
with a do statement.

Listing 8-4: Leap before You Look
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithDo {

 public static void main(String[] args) {
 String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

 do {

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

 } while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”));

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:

(continued)

212 Part II: Writing Your Own Java Programs

Listing 8-4 (continued)
 iconFileName = “res/drawable-xhdpi/cat.png”;

 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

With a do statement, the computer jumps right in, takes action, and then
checks a condition to see whether the result of the action is what you want. If
it is, execution of the loop is done. If not, the computer goes back to the top
of the loop for another go-round.

Some formalities concerning
Java do statements
A do statement has the following form:

do {
 statements inside the loop
} while (condition)

The computer executes the statements inside the loop and then checks to see
whether the condition in parentheses is true. If the condition in parentheses
is true, the computer executes the statements inside the loop again. And so on.

Java’s do statement uses the policy “Leap before you look.” The statement
checks a condition immediately after each iteration of the statements inside
the loop.

213 Chapter 8: What Java Does (and When)

A do statement is good for situations in which you know for sure that
you should perform the loop’s statements at least once. Unlike a while
statement, a do statement generally doesn’t need to be primed. On the
downside, a do statement doesn’t lend itself to situations in which the first
occurrence of an action is slightly different from subsequent occurrences.
For example, with the properly primed while statement in Listing 8-3, the
message in the first input dialog box is Density? and all subsequent messages
say Invalid input. Try again. With the do statement in Listing 8-4, all
input dialog boxes simply say Density?.

Count, count, count
This section’s example is a kludge.

kludge (klooj) n. Anything that solves a problem in an awkward way,
either to fix the problem quickly or (in Chapter 8 of Java Programming For
Android Developers For Dummies) to illustrate a point.

In fact, after examining this example, you might wonder whether anyone ever
uses the Java feature that’s illustrated in this section. Well, this section’s
feature (the for statement) appears quite frequently in Java programs. Life
is filled with examples of counting loops, and app development mirrors life —
or is it the other way around? When you tell a device what to do, you’re often
telling it to display three lines, process ten accounts, dial a million phone
numbers, or whatever.

For example, to display the first thousand rows of an Android data table, you
might use this Java for statement:

cursor.moveToFirst();

for (int i = 0; i < 999; i++) {
 String _id = cursor.getString(0);
 String name = cursor.getString(1);
 String amount = cursor.getString(2);
 textViewDisplay.append(i + “: “ + _id + “ “ +
 name + “ “ + amount + “\n”);
 cursor.moveToNext();
}

Unfortunately, examples involving Android’s data tables and phone numbers
can be quite complicated. Start with a simple example — one that displays
icons in three different sizes. Listing 8-5 has the code.

214 Part II: Writing Your Own Java Programs

Listing 8-5: A Loop That Counts
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithFor {

 public static void main(String[] args) {

 int densityCode;
 String iconFileName = null, message = null;

 for (int i = 1; i <= 3; i++) {
 densityCode = i * 160;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:
 iconFileName = “res/drawable-xhdpi/cat.png”;
 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
 }
}

215 Chapter 8: What Java Does (and When)

Listing 8-5 declares an int variable named i. The starting value of i is 1. As
long as the condition i <= 3 is true, the computer executes the statements
inside the loop and then executes i++ (adding 1 to the value of i). After
three iterations, the value of i gets to be 4, in which case the condition i <=
3 is no longer true. At that point, the program stops repeating the statements
inside the loop and moves on to execute any statements that come after
the for statement. (Ha-ha! Listing 8-5 has no statements after the for
statement!)

In this example, the statements inside the loop include

densityCode = i * 160;

which makes densityCode be either 160, 320, or 480 (depending on the
value of i). The loop’s statements also include a big switch statement
(which creates icon and message values from the densityCode) and a
couple of statements to display the icon and the message. The result is the
display, one after another, of the three icons for the three densities 160, 320,
and 480. Listing 8-5 displays all three icons, one after another, without ever
getting input from the user, as shown in Figure 8-7.

Figure 8-7:
One run of

the code in
Listing 8-5.

216 Part II: Writing Your Own Java Programs

Some formalities concerning
Java for statements
A for statement has the following form:

for (initialization ; condition ; update) {
 statements inside the loop
}

 ✓ An initialization (such as int i = 1 in Listing 8-5) defines the action to
be taken before the first loop iteration.

 ✓ A condition (such as i <= 3 in Listing 8-5) defines the element to be
checked before an iteration. If the condition is true, the computer
executes the iteration. If the condition is false, the computer doesn’t
execute the iteration, and it moves on to execute whatever code comes
after the for statement.

 ✓ An update (such as i++ in Listing 8-5) defines an action to be taken at
the end of each loop iteration.

You can omit the curly braces when only one statement is inside the loop.

What’s Next?
This chapter describes several ways to jump from one place in your code to
another.

Java provides other ways to move from place to place in a program, including
enhanced for statements and try statements. But descriptions of these
elements don’t belong in this chapter. To understand the power of enhanced
for statements and try statements, you need a firm grasp of classes and
objects, so Chapter 9 dives fearlessly into the classes-and-objects waters.

I’m your swimming instructor. Everyone into the pool!

